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INTRODUCTION

In [8], I. J. Schoenberg generalizes the construction of best quadrature
formulas in two ways. He discusses integrals with an arbitrary pre-assigned
weight function opening up the possibility of constructing this kind of q.f.
for the numerical evaluation of Laplace transforms, Fourier integrals, and
other special integral transforms. We pursue this possibility here; in
particular, we wish to discuss approximations to the integrals

f_i F(x) et dx 1)
fo “ F(x) cos xt dx @)
[ * F(x) sin xt dx 3)

In the paper [8], for m, a positive integer and w(x), an arbitrary pre-
assigned weight function, Schoenberg discusses q.f. of the form

m—1 m--

n n 1
[ W FG) dx = 3 HEIG) + X BRIOO + ¥ CmiOe) + Rf. (@)
v=0 j=1 j=1
He requires: (i) that the q.f. (4) be exact, i.e., Rf = 0, if f€ m,,_; , the class of
polynomials of degree not exceeding m — 1; and (ii) that the functional, Rf,
when written in Peano-fashion as an integral of the form j:f K(x) fm(x) dx
has the kernel K(x) with least L,-norm. This q.f., he shows, is uniquely
characterized by requiring Rf = 0 if fis a spline function of degree 2m — 1
32
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SPLINES FOR FOURIER TRANSFORMS 33

having the knots 1, 2,..., # — 1, that is, f(x) € C**~%R) and f(x) € myp_; {or
xin {(—oo, 1), (1, 2),..., (n — 1, n), (1, 0).

Here we shall discuss infinite analogs of the q.f. (4) for the real line R and
the half-line (0, c0) or R+. We first consider the entire line, the so-cailed
cardinal case when all the integers v are nodes of the g.f. Let S, (n a positive
integer) denote the class of functions S(x) such that

(1) S(x)e CHR);
(ii} S(x) € w,_;ineachinterval (v 4 #/2 — 1, v + n/2) for all integers v.

Such functions are called cardinal spline functions of degree n — 1.

Let n be even, say n = 2m, and consider a q.f. of the form

| fGydx =Y HEFG) + Y, )

o0

where the numerical coefficients H{*™ satisfy the condition that
| H®™ | < K for all v and some appropriate K. {6

In [10, Theorem 5, p. 30] Schoenberg proves the following:

Among all quadrature formulas (5), (6), the q.f.

[ a3 16)+ & ¢

is characterized by the requirement that Rf = 0 if f € S,,, N L1(R).

In Part I, we first consider the analog of the g.f. (4) for the entire line R and
we take w(x) = ¢®, that is, we discuss approximations to the Fourier trans-
form (1). Let # be any positive integer and consider a q.f. of the form

[" s et = ¥ HO0) + R ®)

where the coefficients H%' satisfy the condition that
| Hfﬁ)] < K for fixed ¢, for all », and some K. (%

Note that the coefficients A are now functions of 7.

To describe our analog of (7) we need some notation introduced in
[6, pp. 79, 114-116] and discussed further in Section 1, below. We define,
for k a natural number,

. N
2 sin t/2) (10)

() = ( P
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and

oult) = 3 Pt + 2m)). (1)
j=—a0
The ¢,(¢t) term is a cosine polynomial, positive for all real ¢ [7, Lemma 6,
p. 180]. We may now state

THEOREM 1. Suppose f(x) € CYR), and that f(x) and f'™(x) are in L,(R)
and — 0 as x — +. Among all quadrature formulas of the form (8), (9),
there is a unique formula, given by

| oot ax = 4205 1) et Ry 12

with the property
Rf=0 whenever  fe S, N Ly(R). (13)

We obtain this q.f. (12) by using Newton’s fundamental idea: assuming
the function f(x) to be given numerically at equidistant points of step 1,
including the origin 0, we interpolate f(x) by a function S(x) at these points,
and then construct the Fourier transform of S(x). This idea has been used
before, and often, for the integrals (1)~(3) [4]. In fact, for n = 2, the case of
linear spline interpolation, the g.f. (12) can be found in {4, pp. 22, 23].

In Part I, we also consider the analog of the g.f. (4) for the half-line R+
and we take w(x) == cos xt or w(x) = sin x¢. With this choice of w(x) and m
a positive integer, we seek a g.f. of the form

[T w6 dx = 3 B 0) + Z BEO0) £ R, (14
v=0
where the coefficients H%™ satisfy the condition that

| H2 | < K for fixed ¢, all integers » > 0, and some K. 15)

Again, for m fixed, the H*™ are functions of ¢. Theorem 5 in Section 4 below
gives an explicit form for these q.f.
We also consider q.f. of the form

[y cos xtax = ¥, HE 1) + Z BEP f&0(0) + Rf, (16)

v=0

[ £y sim e dx = S HEFG) + Z BEVFO0) 1 R, (17)

v=0
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where the coefficients again satisfy the condition (15). For the weight function
cos xt, we obtain the following:

THEOREM 2. Suppose f(x)e C*™(R*), and that f(x) and f@®(x) are in
L(RY) and — 0 as x — co. Then, among all q.f. of the form (16), (15) there is
a unigue q.f., given by

J;w F(x) cos xt dx = z::gt; 3 f0) + Z f() cos Vt}

PRIl e
(e

with the property
Rf=20 whenever eS8y, N L{R*). (19

The analogous theorem for the weight function sin xt is stated in Theorem &,
Section 4 below.

We obtain the q.f. (16) and (17) by constructing the cosine or sine transform
of the appropriate spline interpolant. Closest to this point of view is the
paper [1] in which Einarsson approximates integrals of the form

b b
J f(x) cos wx dx, ’r ' f(x) sin wx dx
by taking the transform of a cubic spline with equidistant knots that matches
f(x) at the knots and the values (@) and f'(b) at the appropriate endpoints.

For the case of (16) and (17) for a finite interval, Marsden and Taylor in [S}
exhibit precisely the analogues of the q.f. in Theorems 2 and 6. In fact, their
results for the finite interval allow us to establish Theorems 2 and 6 for
general m.

Part II contains expressions for the error, as well as estimates of bounds of
these errors, for the approximations we make in the first part. We acquire
these expressions by showing that we could have constructed our g.f. another
way, by utilizing a particular monospline. In Section 6 below, we establish

THEOREM 3. Suppose f(x) € C**(R*) and f*(x), f(x) are in L(R") and
—> 0 as x — co.

o

1°. The remainder Rf in the q.f. (18) of Theorem 2 is given by

)

e J| teos xt — i1 ) ae

t?m

o

[

.l
S
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where S{x) is the unique, bounded (2m — 1)st degree cardinal spline inter-
polating cos xt at the integers.

2°. For the step length h, we can bound Rf in the q.f.

f: f(x) cos xt dx = ﬁj:g;g h g f0) + i f(wh) cos vthg

+ mi (— 1)’ [ ¢-zj(ﬁ;22f(2:}szj(’h) ] FED0) + Rf
(21)

by
h 2m
|RA| < A () 1% fryan for —mfh <t <mh  (22)

where

A._2(1+22~(2—ﬁ—1)2m—)<3 for m=1,2... (23)

We use L. J. Schoenberg’s very nice application of the exponential Euler
splines to get our bound for the Fourier transform case, Theorem 7, Section 5
below, and show that this approach also gives us the bound in Theorem 3.
The result is also an improvement over our original estimate in which the 4,,
of (22) was replaced by the number 4 [13, p. 91].

1. APPROXIMATIONS TO THE TRANSFORMS (1), (2), (3)

1. Preliminaries. We first recall some known definitions and results [6].
Let n be a natural number and define the central B-spline or basis spline

M(x) = M, (x) = 8"xm Y, (1.1

1
(n— DU

X if x>0,
T if x<0

where

Xy

where 8" stands for the usual symbol for the nth order central difference of
step equal to 1. M,(x) is a spline function of degree n — 1 having as knots
the points v (v integer), or v + 1, depending on whether » — 1 is odd or even.
M, (x) is positive in the interval (—3in, in) and vanishes elsewhere, and
evidently M ,(x) € S,, . It has the following Fourier transform:

| My et = ) (1.2)



SPLINES FOR FOURIER TRANSFORMS 37

where

\

4 . t n
2sm§
()= | —= 1. (1.3
/

7

(See [6], pp. 67-72).
We also define a forward B-spline Q,(x) by

0.0 = M [~ 3) = Grigyr 1, 0 () -0t G

Q,(x) has integer knots, is positive in (0, ) and zero elsewhere.
With ,(¢) defined by (1.3), we define

S = 3 hult + 2m). @5

j=—00

¢,(2) is a cosine polynomial of period 27 and order [(n + 1}/2] — I that can
be explicitly computed from the expression

bult) = i M) e = M) cos . (1.6

p==— jvign/2

Related to the equivalent form

41 = (25in3)’ Z(f; Iz)mz)

we define a new set of periodic functions by

palt) = (2 sin ) Z "+ 2,Tv)n :
Evidently
() = p,(t) if n is even. (.7

The functions (1.7) can be obtained recursively from

Prialt) = cos 5 > pn(t) = sm 5 Pn (1) {1.8}

starting with the initial value p,(¢) = cos(#/2) (see [6], pp. 114, 115).
By Lemma 6 of [7, p. 180] we have

max ¢,(1) = ¢,(0) = 1,  min $,(r) = $,(m) > 0. (1.9)
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By (1.6) we find
$(t) = 1,
$s(t) = (3 + cos 1)/4,
ba(t) = (2 + cos 1)/3.

We shall need Z,(x), the so-called fundamental cardinal spline function of
order n, or degree n — 1, which we call the unique, bounded member of S,
which satisfies

L) = 8y, for all integers v.

It was found [6, p. 124] that

L(x) = L» lng; =~z fx

and, inverting, that

f_w H) et dx = L (1.10)

2. Proof of Theorem 1. The author is indebted to 1. J. Schoenberg for the
following simplified version of the proof. We first note that the result
{10, p. 27; 13, p. 12]

S(x) € S, N Ly(R) implies i 1 8()] <

and (9) guarantee that the functional Rf is well defined by (8) if
S(x)e S, N L(R).
To derive the g.f. (12), we start from the identity

S(x) = i S@) Lulx —v) (2.1)

valid for any cardinal spline of power growth, S(x) € S, [9, Theorem 3, p. 407].
In particular, this identity is valid if S(x) € S, N L,(R). Multiplying by &**
and integrating, we find

[ S ety = Y AMSE), 2.2)

—w y=—cC

where

Al") = J._m L(x — v) et dx = et fj Z(x) et*t dx
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or, by (1.10),

A — il_(_t_)eévt_

)

The interchange of the integral and the sum in (2.2) is justified because
S(x)e S, N Li(R) and the series in (2.1) converges absolutely and Jocaily
uniformly. By (1.9), we obtain

i
T $40)”

bult) .
Falt)

so that (9) is satisfied.
In order to characterize the q.f. (12), we suppose (8), (9) and (13) hold. If
we choose f(x) = Z,(x — v), we obtain
Rf=0=[" #(x—v)esidy — HY

or

() [ Z - ixt — llb’"(t) ivt
H™) J_m Zx — vyeitt dx N e

N’

as above.

3. Proof of Theorem 2. We take w(x) = cos xt, but consider more general
boundary conditions that include those of Theorem 2 as a special case.
Partition the numbers 1, 2,..., 2m — 2 into the m — 1 disjoint pairs.

(1,2m —2), 2, 2m — 3),..., (m — 1, m). 3.4
Note that the sum of the numbers in each pair is 2m — 1. Let 7 be a set of
m — 1 numbers obtained by choosing one and only one number from esach

of the pairs {3.1). One possible choice is

I={1,3,5,..,2m —3} {

)
)
Nt

which corresponds to the derivative data required in Theorem 2.
For simplicity, we write H, = H&™, B, == B®™. We want io construct &
q.f. of the form

a3
R

[“fxycos xtdx = 3. H,f6) + ¥ B.fOO) + Rf G.
Yo y=0

i



40 SHERWOOD D. SILLIMAN

such that
| H,| < K for all integers v >> 0 and some K 3.9
and with the property that
Rf=0 if feS,, N L{(RY). 3.5
We shall need the fundamental functions
L(x) (»=0,1,.); Ax) (el

for this semicardinal case. There are the unique, bounded members of
Som N Ly(RY) that satisfy

L()=8;, LPO®=0  (icD (3.6)
A0) =0,  APO =3 (G kel (3.7

Schoenberg [11, Theorem 2, p. 86] has shown that
| L(x)| < Ae—lz—1, [ A;(x)] < e for x >0 (3.8)

for appropriate constants 4 and « depending only on m.
The proof for the semicardinal case proceeds the same way as the proof
of the cardinal case, Theorem 1. The result {10, p. 27]

S(X) € Sy N Ly(R*) implies ¥ | SG)| < oo
0

and (3.5) guarantee that Rf is well defined by (3.3) if S(x) € Sy, N Li(R*).
This time we begin with the identity

S(x) = i S@) L(x) + Y, §9(0) A(x) (3.9

valid for any semicardinal spline that satisfies S(x) = O(x*) as x — o,
[11, Theorem 3, p. 86]. Taking the cosine transform of S(x) gives

f ” S(x) cos xt dx = {Z A,S0) + ¥ Cif 9(0) (3.10)

el

where

A, = jw L,(x) cos xt dx, C; = fw ALx) cos xt dx (3.11)
0 (1}
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The interchange of integral and sum in (3.10) is justified as in the proof of
Theorem 1.
To establish the unicity of the q.f. we suppose that (3.3), (3.4), and (3.5}
hold and choose f(x) equal to L (x) and then A(x) to obtain

H, = A4, = J L(x)cos xt dx
1]

{3.12;
B, =0C, = J A(x) cos xt dx,

0

respectively, because of (3.6), (3.7), and (3.11). We have established the
following:

THEOREM 4. Suppose f(x) € C*(R*) and f*(x) are in L(R™) and — G
as x — 0. Among all q.f. of the form (3.3), (3.4), there is a unique q.f., given
by (3.3) and (3.12), that satisfies (3.5).

For the choice of I = {1, 3, 5,..., 2m — 3} corresponding to the derivatives
needed in Theorem 2, we can obtain simple, explicit forms for the coefficients
H,, B;. We employ some results that Marsden and Taylor {5] obtained for
the finite interval. To do this, we restrict any S(x) € S,,, N L,(R*) to the
interval [0, V], obtaining a spline function of degree 2m — 1 on [0, V],
for which [5, pp. 1, 8, 11]

};-ON S(x) cos xt dx = ii”:gg % ‘12 SO) + Z S(k) cos kt + = S(A/ ) cos Nt!
ml( 1) Pom—si(1) P2 cios
+ Z [ - gf),m(fl; ] ( 1)(0}

_ z —1y [ Yoot pai(t)

@3N} cos Nt
1 (}ng(f) ] S ,(N) €08

j=1

_mz—l l)f“[ _ Pomegjoa{t) payna(t)

275 A/ Y g1 i
[T o) ] SN Y sin Nt

{3.13)
Note that if we use Markov’s Theorem repeatedly and (3.8), we obtain
L*N)—=0, A¥N)—>0 as N— (k=0,1,...,2m — 2).
(3.14)
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Now, let S(x) = L,(x) in (3.13), so that, by (3.6) and (3.14) we obtain

[ L40e) cos xe dx = 1 img; ,

* ) _
fo L(x)cos xtdx = m cos vt v=12..).

Similarly, if we substitute 4,(x) for S(x) in (3.13), we find

J.Ow As;_(x) cos xt dx = (—t;.)j [1 — 'ﬁgm;ﬁgtg"‘j(t)] (j=12..,m—1

These results, together with Theorem 4, prove Theorem 2.

4. Different Derivative Data; the Sine Transform. We can also express the
q.f. of Theorem 4 in another way that more explicitly relates this q.f. to the
one of Theorem 2. For I = {1, 2,..., m — 1} we have

THEOREM 5. Let S(x) € Ly(R*) be the unique spline of degree 2m — 1 for
x = 0 with knots x = 1, 2,... satisfying the conditions

S() = f(v) (v=0,1,2..)

@.1)
S90) = F9%0) i=1,2,...m—1).

Then the q.f. of Theorem 3 may be written as

f f(x) cos xt dx = izmgf ;

+

L0 + ¥ £6) cos vt

v=1

(__l)i SL’m—%(t) d"h(t) 951
2i~1gm—1 1% [1 N ——m—_] fERO)

(— 1)2 l/‘:’mz—?i(t) 95 z(t)
+ 211-;;7:1 tzi [1 B ¢2m(t) 2

g

] S@-1(0) + Rf.
(4.2)

A proof follows from observing that the g.f. (18) of Theorem 2 is exact for
the S(x) of the hypothesis and from there applying (4.1).

In Section 3, we considered w(x) = cos xt. Now we take w(x) = sin x¢
and indicate an analog of Theorem 2. Theorem 4 and its proof are valid if
sin xt replaces cos xt, and we get the coefficients of the q.f. in a particularly
simple form if we now choose I = {2, 4,..., 2m — 2}. A similar expression to
(3.13) [5, pp- 1, 8, 11] yields the following:
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ik

THEOREM 6. Suppose f(x) e C*™(R*) and f{x) and f?(x) are in L{R+)
and — 0 as x — oo, Among all q.f. of the form

f Gy sinxtdx = 3 HEFG) + Y. BEFO0) - R,

=0 J= 1
where

f H("m) | < K for fixed t, for all integers v 2> 0 and some K,

there is a unique q.f., given by

e . )m(t)
Jo F(x) sin xt dx = Q) 2:1 f(v) sin vz

m—1 j R Cq
+ ¥ (;;2 [1  Bam1ai(t) pasa(t) 1 FRN0) + Rf

j=0 ‘!’Zm(t )
with the property
Rf=0 whenever  f€8,, N L,(R*).

We also obtain an obvious analog of Theorem 5 for the sin x¢ case if we
use Theorems 4 and 6.

II. EXPRESSIONS FOR THE ERRORS

5. Exponential Euler Splines and the Fourier Transform. In the intro-
duction we mentioned that we could have constructed our q.f. in another way,
by using a particular monospline. We do this here, and instead of basing our
error bounds on a result of M. Golomb [3, p. 41] as in [13], we foliow
I J. Schoenberg in developing our error expressions by using exponential
Euler splines and their properties [see 11, Lecture 10, Part 1],

We first discuss the simpler, cardinal case, and consider the unique,
bounded cardinal spline of degree 2m — 1 interpolating e’ at the infegers
[11, Theorem 1, p. 85]. This spline

S(x) = Som—a(x; €
is also an exponential Euler spline where the base of the exponential is

y=et A1, Le, Sl +1)=p8(x) = " S(x).
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We shall need more information about S(x) in the interval [0, 1].
(See [11], pp. 21-24].) Suppose 0 << x <{ 1 and n = 2m — 1 and define

Do(x;9) = ). ¥0nis(x — J) (5.1
where Q,(x) is the forward B-spline defined in (1.4), so that
Sul; ¥) = Plx; y)[Po(0; 3) (5.2

We also define the monic polynomial A4,(x; y) = x* 4 (lower degree terms)
by
Ax; ) =0t (1 —y )y Pux;y) (¥ #0,p # D). (5.3)

This polynomial is also given by
A, ) = 5"+ ([) @) X1+ (5) @) 37 4 ok an(5), (54)

where
a?l(.y) = (y - 1)—71 Hn(y)

Here the I1,(y) are the so-called Euler-Frobenius polynomials. They are
related to the forward B-spline Q. ,,(x) by the identity

n—1

IT,(y) = n! 2 Qua(J + 1Dy (5.5)

They also satisfy the recurrence relation
I1,(y) = A+ mp) IL(y) + 30 = I/ (y)  (I(y) =1) (5.6)
from which we find

Ho(y) =1, Hz(y) =y-+1,
() =1, Il y) =)y +4y+ 1.

Later, we shall need information about derivatives of S(x) so we record
here that

AP0, ) = nW(y — D=+ IT,_{»)/(n — j)!
and (5.3) imply that

D90 ) = y(y — W (M ~))! (=0, 1,m)  (57)
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We also find that

B(0; y) = y ™I (! =y 5 Quulj+ D)y
j=0

m—1
= e~imt Z MZm(j) et = e_imt‘,bz.m(!) {58)

j=—(m-1)

Now suppose f(x) € C¥(R) and that f(x) and f?™(x) are in L,(R) and — ¢
as x — +oo. Let

K(x) = e — Sy, _1(x; ') (5.9
and consider the functional
Rf — [: K(x) fem(x) dx = ;_Z K(x) df @m=0(x).
Integrating this expression by parts iteratively yields

Rf: (_1)2»1——1 J.oo K('Zm—l)(x) df(x) — “w [(izx)2rrt——1€i9:t . S{zm—li{x)] d_’f(:i‘}

—

From this, we obtain

0

}ij f(x) et dx — (,‘t)—'z:n Z [S’(2m—1)(,, + ()) —_ S(zm‘z)(y o Q)] f(v)
- (l‘t)—'Zm fr‘ K(x)f(zm)(x) Jx (5}3)

and require the following lemma proved by Schoenberg [11, Lecture 10].
Lemma 1. We have the relations

(it)=#m[SEm=I(y L Q) — SEn-D(y — () = %«;m((lt)) forall v. (5.11)

This shows that the coefficients of (5.10) are identical with those of {12},
Theorem 1i.

We now want to express the q.f. for the Fourier transform in Theorem 1
for n = 2m in steps of length A. If we replace f(x) in (12) or (5.10) by f{xa)
we obtain the relation

fj; f(xh) et dx = qs:;"g; > f(vh) e + Rf
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where
Rf — (l‘t)—zmhmn fw [eiwt — S(x, eit)]f(?.m)(xh) dx

Replacing first x by x/4 and then replacing ¢ by ¢h yields

[” s e ax = ——_izmg;g B0y et 4 Rf (5.12)
where
Rf = Gty [ fetet — S(xfh, )] f(x) di. (5.13)

—&0

Here S(x/h, ¢'*) is the unique, bounded (2m — 1)st degree spline interpolating
et at the points x = 0, A, 4-24,... .

We require Theorem 8 of Schoenberg’s [11, p. 30] whose statement is the
following:

If —7 <t < 7, then

2m
| et — Syna(x; €] < 4, ({;—) for all real x, (5.19)

where

© 1
Ay = 2(1 42 V; W) <3  for m=1,2.. (515

This is applied by keeping the old ¢ fixed and choosing 2 > 0 so that

—mlh <t < njh (5.16)

Then, apply (5.14) with ¢ replaced by th, and x by x/h, to obtain
) ) th \m
| eivt — S, ,(x/h; €) < A, (7) for all x. (5.17)

Then (5.17) and (5.13) yield

R < A (2) 170 e (5.18)

This establishes
TrHEOREM 7. Suppose f@™(x), f(x) are in L,(R) and — 0 as x — 4-o0.

Then we can bound Rf in the q.f. (5.12) by (5.18) for all t and h satisfying
(5.17).
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6. Proof of Theorem 3. We can now adapt Schoenberg’s proof of the
cardinal case to the semicardinal case. We begin with the same monospline
(5.9) we employed for the cardinal case, but now integrate the functional

Rf = [ K fem ds = [ * Ko df oo

by parts until eventually we find

2m—1

fwf(x) eixt dx = __(l‘t)-2m Z (—l)j[(it)g”’“l“j — S(Z'm»—1~j)(0)1f(i)(0)
¢ j=1
_ (l't)——zm[(,'t)zm—l o S(Efm—l)('o + 0)] f(o)

L ity i [S@-D(y 4 0) — SEn-B(y — O)] f(»)

v=%}
+ Gy | K@) fem(x) dx. 6.1
0
In addition to Lemma 1 we also need

LeEMMA 2. We have the relations
10_ ___(ir)——?m(_ 1)][(”)21‘:1—1*]' _ S(Zm—l~j)(0)]
1N lz[’zm—lvj(t)Pi+1(t)
—— 1)i+1 — RTINS TITAN

and

20_ __(it)—mn[(it)zm—l . S(Zm—l)(() + O)}

— _I, iﬁz;n(t) T (l'f_l) [l . 'ﬁzmq—;??f)’l(”] (63}

- 2 ¢2171(t)
Proof. For 1°, we first claim that, for y = &%,
L = e WD R, @) (= 1,2,0) (6.4)
Forj = 1, we get y=* = e~ The rest follows by a straightforward induction
using the recurrence relations (5.6), (1.8) that the 71,(y) and p; (¢) satisfy.
From (5.2), (5.7), and (6.4) we find
Stem-1-i(0) = P@n-1-1(0, p)/B(Q, ) (6.5}

640/12/1-4
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where
PRm-1-3(Q, y) = y~@m-D(y — )21 [L(y)/j!
= (1 — e-ity2m-1-i gD 2Ny (1) (6.6)

The left side of (6.2) becomes
— (i)~ —1)I[] — (if)~@m-1~7) S@m-1-)(()]

= (ir Yty [1 — ‘p'zvn—l;szgzgjﬂ(t)]

by successively using (6.5), (6.6) and (5.8).
For 2°, we note that because of (5.7) and (5.8) we have that

S(2m—1)(0 ,_l_ 0) —_ (1 —_ e—it)2m—1 eimt/qsgm(t)
so that the left side of (6.3) becomes

— (i) L — (it)~EmD(] — e—ity2m1 gltem—) Plitg-{2n-1) Plitgint] b, (1)]
= ity [1 — (i) Cm-1(] — g-itypm-1 glm-1)/2)it cog _2"_ / ¢zm(t)]
; . .t
— (i1 [py—em—n(y _ pmityem-1 gpem—n 22t (5 gin L\ [
(i) [y em0( — e-tyn-te (i sin 5 [#eu®)]-

which is the right side of (6.3).

If we use Lemmas 1 and 2 and take real and imaginary parts of (6.1), we
obtain a q.f. for ﬂ,” f(x) cos xt whose coefficients are identical with those of
(18), Theorem 2 and a q.f. for i f(x) sin xt dx whose coefficients are the
same as those of (4.3), Theorem 6. We remark that Re S,,_,(x; ¢*) and
Im S,,.-1(x; %) are the unique, bounded (2m — 1)st degree cardinal splines
interpolating cos x¢ and sin xt, respectively, at the integers. So the first part
of Theorem 3 is established.

The second part of Theorem 3 follows just as Theorem 7 does from the
discussion in Section 5. In particular, the estimate (22) is a consequence of
(5.17). The analogous result for the sin xt case is given by the following:

TusoreM 8. Suppose f(x) € C* and that f*(x) and f(x) are in Ly(R*)
and — 0 as x — 0.

1°. The remainder Rf in the q.f. (4.3) of Theorem 6 is given by

e o .
Rf = (‘sz)— Jo [sin xt — Tm Sy (x5 €] £E(x) dx.
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2°. For the step length h, we can bound Rf in the q.f.

” L0y o3 - ¢‘2m(th) 7
J; F(x)sin xtdx = ol h Zf(vh) sin vth

(1Y Pom—1-25(1) Pasa(th) 1 1105 L pr
+ Z 241 [ - ¢2m(ﬁl) Jf o) + R
by
h 2m

. —1r T
[ Rf| < Ay, (;) | f ) L) for 5 £t 5

N

where A,, is given by (5.15).

7. Remarks. In [2] Einarsson compares several methods for computing
cosine transforms for the special case of f(x) = e~%. One method he uses and
the reason for the paper is based on the approximation of f{x) by a cubic
spline. This q.f., precisely the same one as (21) of Theorem 3 for m = 2, is

‘j f(X) cos Xt dX ¢4(ﬂl)

(0) + Z f(vh) cos vthz

by (ﬂ)
i Uo(th) .
oy [1 > (ﬂ)] £'(0) + Rf (7.1)

where we have used ¢,(r) = 1. Einarsson’s main conclusion is that this spline
q.f. is superior to Filon’s formula, a q.f. based on approximation of the
function by a quadratic in each double interval and one of the most used
formulas for the calculation of Fourier integrals.

Einarsson’s calculations indicate that for small values of ¢, the q.f. (7.1}
gives a relative error that is four times less than the Filon formula. For large
values of #, the relative error of the Filon formula increases rapidly, while the
spline method (7.1) gives a surprisingly small error growth. This same
phenomenon we found to be the case for the following ¢.f., obtained from (21}
for m = 3.

{mf(x) cosxtdx = Yulth) h S—f(O) + Z F(vh) cos vih

i S

belth) = |2

1 Dot .,
i ¢6(m)] O

1 ¢'4(th) {#2(‘”,1) "y 7N
+ 7 [1 - _W_]f ©) + Rf. (7.2}
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This also occurred with the q.f. obtained from (4.2) of Theorem 5 for m = 3,
which differs from (7.2) in that it uses the term S”(0) instead of f”(0). These
q.f. correspond to quintic spline approximations, (7.2) using I = {1, 3} and
the latter using I = {1, 2}.

In regard to the absolute error, we consider

oc
f e Tcos xtdx = ——
[} 1+f"

and the step # = 27/32 a 0.2 for the g.f. (7.1) and (7.2). We can compute
bounds on Rf by using (22) and (23) and find that

| Rfl; < 4.6 x 105, | Rfl; < 1.8 x 107 for —16 < 7 < 16,

where the subscript indicates (7.1) or (7.2) respectively. Calculations using
(7.1) indicate that the absolute error in the cubic case is actually greater than
the bound for | Rf |; for values of ¢ less than 2. For related observations and
some graphs, see [13, pp. 98-106].
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